1.通俗易懂2.因为集合描述法是一种用来描述集合中元素的方法,它通过列举出满足某种条件的元素来定义集合。例如,我们可以用集合描述法表示“所有大于0小于10的整数”为{1,2,3,4,5,6,7,8,9}。这种方法简洁明了,容易理解。3.集合描述法的通俗易懂之处在于它可以用我们日常生活中的经验和常识来描述集合。通过列举出满足某种条件的元素,我们可以直观地理解集合的内容。这种方法不需要过多的数学符号和推理,更加贴近我们的思维方式,使得集合描述法更易于理解和应用。
把集合中元素的公共部分用文字,符号,式子等描述出来,写在大括号内,这种方法叫做描述法。
描述法的一般形式为{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的公共部分)
集合的表示方法不只三种,有四种表示方法。分别是:列举法、描述法、图像法、符号法。
1、列举法列举法就是将集合的元素逐一列举出来的方式。
2、描述法描述法的形式为{代表元素|满足的性质}。
3、图像法图像法,又称韦恩图法、韦氏图法,是一种利用二维平面上的点集表示集合的方法。
4、符号法有些集合可以用一些特殊符号表示,如:N::非负整数集合或自然数集合{0,1,2,3,…}
描述法是集合的常用表示方法。
描述法的定义﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}
先写个X,再写个竖线,然后再写要表示的数学特征。
例如:小于π的正实数组成的集合表示为:{x|0<x<π}
描述法是集合的常用表示方法。
描述法的定义:常用于表示无限集合,把集合中元素的公共属性用文字,符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法。
集合
数学名词。指若干具有共同属性的事物的总体。如全部自然数就成一个自然数的集合,一个单位的全体人员就成一个该单位全体人员的集合。简称"集"。
简单来说,所谓的一个集合,就是将数个对象归类而分成为一个或数个形态各异的大小整体。一般来讲,集合是具有某种特性的事物的整体,或是一些确认对象的汇集。构成集合的事物或对象称作元素或是成员。集合的元素可以是任何事物,可以是人,可以是物,也可以是字母或数字等。
在计算机科学中,集合是一组可变数量的数据项(也可能是0个)的组合,这些数据项可能共享某些特征,需要以某种操作方式一起进行操作。一般来讲,这些数据项的类型是相同的,或基类相同(若使用的语言支持继承)。列表(或数组)通常不被认为是集合,因为其大小固定,但事实上它常常在实现中作为某些形式的集合使用。
集合的种类包括列表,集,多重集,树和图。枚举类型可以是列表或集。
还没有评论,来说两句吧...