方差的求法:
是S^2={(x1-m)^2+(x2-m)2+(x3-m)2+…+(xn-m)^2}/n,公式中M为数据的平均数,n为数据的个数,S^2为方差。
文字表示为方差等于各个数据与其算术平均数的离差平方和的平均数。其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。
方差是用来描述随机变量对于数学期望的偏离程度的指标,可以用不同的公式计算。其中一种常见的计算公式是“方差等于各个数据与其算术平均数的离差平方和的平均数”。另外,还有离散型和连续型的计算公式,其中离散型的方差公式为S^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2],其中m为这组数据的平均数,n为数据的总个数。无论采用哪种公式,计算方差的步骤都是先求出数据的平均数,然后用每一个具体的数据减去平均数得
方差=平方的均值减去均值的平方。
有1、2、3、4、5这组样本,其平均数为(1+2+3+4+5)/5=3,而方差是各个数据分别与其和的平均数之差的平方的和的平均数,则为:
[(1-3)^2+(2-3)^2+(3-3)^2+(4-3)^2+(5-3)^2]/5=2,方差为2。
方差的公式:
方差是实际值与期望值之差平方的平均值,而标准差是方差算术平方根。
方差是各个数据与平均数之差的平方的和的平均数,即
其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s2就表示方差。
方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差,记作S2。
方差是应用数学里的专有名词。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。方差的算术平方根称为该随机变量的标准差。
方差计算公式
方差是各个数据与其算术平均数的离差平方和的平均数,在实际计算中,我们用以下公式计算方差。
常见方差公式
(1)设c是常数,则D(c)=0。
(2)设X是随机变量,c是常数,则有D(cX)=(c2)D(X)。
(3)设X与Y是两个随机变量,则
D(X+Y)=D(X)+D(Y)+2E{[X-E(X)][Y-E(Y)]}
特别的,当X,Y是两个相互独立的随机变量,上式中右边第三项为0(常见协方差),
则D(X+Y)=D(X)+D(Y)。此性质可以推广到有限多个相互独立的随机变量之和的情况。
(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。
(5)D(aX+bY)=a2DX+b2DY+2abE{[X-E(X)][Y-E(Y)]}。
计算方法
若x1,x2,x3......xn的平均数为M,则方差公式可表示为:
例1两人的5次测验成绩如下:
X:50,100,100,60,50,平均成绩为E(X)=72;
Y:73,70,75,72,70,平均成绩为E(Y)=72。
平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。
单个偏离是消除符号影响方差即偏离平方的均值,记为D(X):
直接计算公式分离散型和连续型,具体为:这里是一个数。推导另一种计算公式
得到:“方差等于平方的均值减去均值的平方”。
其中,分别为离散型和连续型的计算公式。称为标准差或均方差,方差描述波动
还没有评论,来说两句吧...