cosA=(b2+c2-a2)/2bc,余弦定理公式
cosA=(b2+c2-a2)/2bc,cosA=邻边比斜边。余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理。运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题。
余弦定理性质
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c三角为A,B,C,则满足性质:
a^2=b^2+c^2-2·b·c·cosA
b^2=a^2+c^2-2·a·c·cosB
c^2=a^2+b^2-2·a·b·cosC
cosC=(a^2+b^2-c^2)/(2·a·b)
cosB=(a^2+c^2-b^2)/(2·a·c)
cosA=(c^2+b^2-a^2)/(2·b·c)
(物理力学方面的平行四边形定则以及电学方面正弦电路向量分析也会用到)
第一余弦定理(任意三角形射影定理)
设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有
a=b·cosC+c·cosB,b=c·cosA+a·cosC,c=a·cosB+b·cosA。
和积互化
cosa+cosb=2cosa+b/2cosa-b/2
cosa-cosb=-2sina+b/2sina-b/2
cosacosb=1/2[cos(a+b)+cos(a-b)]
“余”指的是两角和差的余弦,“同”指的是同组相同者,也即形式相同者,“异”指的是等式两边的符号相反。
两角和差的正弦余弦公式的口诀:正异同,余同异
二角和差公式:
口诀(正余弦两角和差公式):
赛壳壳赛符号同,壳壳赛赛符号异。
1)正弦和差前后同号,余弦和差前后异号
2)正弦和差公式始终是sin与cos相乘;余弦和差公式始终是cos与cos相乘,sin与sin相乘
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
1、三角函数两角差公式:
sin(α-β)=sinα·cosβ-cosα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
2、倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
3、半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
4、根据两角和差公式,常见的角度制下的角可以表示为:sin(90°+α)=cosα;cos(90°+α)=-sinα;tan(90°+α)=-cotα;sin(90°-α)=cosα;cos(90°-α)=sinα;tan(90°-α)=cotα.
三角函数两角和差公式记忆口诀
正弦异名加一起,余弦同名加减异,正切就是正比余。正弦公式符号同,余弦公式正变负。
定义
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
.
余弦定理:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.
公式
正弦定理:
.
余弦定理:
;
;
.
定理:
1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。a/sinA=b/sinB=c/sinC=2R,(R是三角形外接圆半径)。
2、余弦定理:cosα=(B^2+C^2-A^2)/2BCcosb=(A^2+C^2-B^2)/2ACcosc=(A^2+B^2-C^2)/2AB推论:
(1)任一多边形的每一条边的平方都等于其它各边的平方和并减去它们两两及其夹角余弦积的二倍.注:次处之夹角系指均按同一绕行方向(或顺时针或逆时针)所得的(共面或异面)夹角.。
(2)任一多面体的每一面的面积的平方都等于其它各面的面积的平方和并减去它们两两及其夹角余弦积的二倍.注:次处之夹角系指均按同一绕行方向(或顺时针或逆时针)所得的二面角。
(3)正切
1.余弦定理是指在一个三角形中,三边的长度和夹角之间存在一个关系式。2.余弦定理的原因是基于三角形的几何性质和三角函数的定义。根据余弦定理,三角形的一条边的平方等于另外两条边的平方之和减去这两条边的乘积与对应夹角的余弦值的两倍的乘积。这个关系式可以用来计算三角形的边长或夹角大小。3.余弦定理在解决实际问题中具有广泛的应用,例如在测量不可直接测量的边长或夹角时,可以通过已知的边长和夹角利用余弦定理进行计算。此外,余弦定理还可以用于解决三角形的形状和位置问题,以及在物理学、工程学等领域中的应用。
还没有评论,来说两句吧...