特征值计算方法
设A是数域P上的一个n阶矩阵,λ是一个未知量,称为A的特征多项式,记|(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。
|(λ)=|λE-A|=λ+a1λ+…+an=0是一个n次代数方程,称为A的特征方程。特征方程|(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。以A的特征值λ0代入(λE-A)X=θ,得方程组(λ0E-A)X=θ,是一个齐次方程组,称为A的关于λ0的特征方程组。因为|λ0E-A|=0,(λ0E-A)X=θ必存在非零解。
若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ是A的逆的一个特征根,x仍为对应的特征向量。若λ是方阵A的一个特征根,x为对应的特征向量,则λ的m次方是A的m次方的一个特征根,x仍为对应的特征向量。
设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量(i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。
求特征值方法与化简技巧
R1+r2
R3-2r2
也只能得出两个0,这样应该已经是最简单的算法了。
因为特征值一般比较简单,所以三次方程也可以快速写成因式相乘的形式的。
这题求得的三次方程式入^3+6入^2+11入+6=0.
通过特殊值,可以轻易知道入=-1时方程成立。
那么三次方程肯定能抽出(入+1)
可以变为入(入^2+6入+5)+6(入+1)=0
(入+1)(入^2+5入+6)=0
(入+1)(入+2)(入+3)=0
扩展资料:
如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν
其中A和B为矩阵。其广义特征值(第二种意义)λ可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。
当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。如果A和B是实对称矩阵,则特征值为实数。这在上面的第二种等价关系式表述中并不明显,因为A矩阵未必是对称的。
求特征值的方法有哪三种
方法一:实对称矩阵不同特征值对应的特征向量相互正交,由此可得第三个特征值对应的特征向量,进一步可得到第三个特征值。方法二:实对称矩阵所有特征值的和等于矩阵对角线上元素的代数和,所有特征值的积等于矩阵的行列式的值。据此可得第三个特征值。实对称矩阵A的不同特征值对应的特征向量是正交的。实对称矩阵A的特征值都是实数,特征向量都是实向量。n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。若λ0具有k重特征值必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵
(在线等!)求特征值和特征向量的步骤是
需要的条件:
特征值,和特征值顺序,还有几何重数。
与特征值对应的特征向量,如果是非对称矩阵需要左特征向量和右特征向量。
计算方法:把特征值写成参考Jordan标准型的矩阵,左右特征向量组成左右特征矩阵,乘起来便是。
特征值的求法是什么
特征值的求法是指从一个给定矩阵A中,找到一个标量λ,使得A-λI能够表示为特征向量的乘积。其中,特征向量就是矩阵A的按列排列的一组向量,而特征值λ就是矩阵A不停迭代后形成的一组数字,可以用于对矩阵A进行分解。通常,在求特征值时,可以采用利用行列式的性质,再结合矩阵的性质、行列式的求解方法、特征方程的解法来求解。
求特征值的方法有哪些
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设A是n阶方阵,如果存在数m和非零n维列向量x,
使得Ax=mx成立,则称m是A的一个特征值(characteristicvalue)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
求n阶矩阵A的特征值的基本方法:
根据定义可改写为关系式,为单位矩阵(其形式为主对角线元素为λ-,其余元素乘以-1)。要求向量具有非零解,即求齐次线性方程组有非零解的值。即要求行列式。解次行列式获得的值即为矩阵A的特征值。将此值回代入原式求得相应的,即为输入这个行列式的特征向量。
还没有评论,来说两句吧...